150V N Channel Enhanced Mode MOSFET | Key parameter | N channel | Unit | |--|-----------|------| | $V_{(BR)DSS\ min.}$ | 150 | V | | R _{DS} (ON) max. V _{GS} =10V | 13 | mΩ | | R _{DS(ON) max.} V _{GS} =4.5V | 15 | mΩ | | I _D | 50.6 | А | | V _{GS(TH)} Typ. | 1.8 | V | | Ciss Typ. | 3995 | pF | | Q g 10V Typ. | 73.6 | nC | #### Description The DG150N06Q used double-gate structure of MOSFET to provide excellent electrical parameter. There is high speed switching capability, low RDSON resistance, stabilizing qualitied and characteristics for these devices. Moreover, it is had extreme high cell density in design. These features combine to be an advantage design for use in wide variety of application including small signal control and load switch application. 1 #### **Features** - Fast switch capacity - ♦ Low R_{DS(ON)} resistance - With voltage logic level driving characteristics - Pb-free lead plating; RoHS compliant | Symbol and Pin assignment | | | | | |---------------------------|-----------------|--|--|--| | 1 S
2 S
3 S
4 G | D 8 D 7 D 6 D 5 | | | | ### Potential application - AC-DC adaptor - DC-DC converter - Load Switch - Electric tool application - LED Applications - Synchronous Rectifier for Power Delivery ### Order Information | | Item | Description | |----|------------------|--------------| | 1. | Order Code | DG150N06Q | | 2. | Part Number | DG150N06Q | | 3. | Package Type | PDFN5x6-8L | | 4. | Package Code | Q | | 5. | Packing Type | Tape & Reel | | 6. | Quantity in Pack | 2,500 | | 7. | RoHS Status | Halogen-Free | ### 150V N Channel Enhanced Mode MOSFET ### Content | Section | Subject | Page | |---------|---|-------| | 1. | Absolute Maximum Ratings | 3 | | 2. | Thermal Resistance Ratings | 3 | | 3. | Electrical Characteristics | 4 | | 4. | Typical Operating Characteristics Diagram | 5-7 | | 5. | Marking Information | 8 | | 6. | Package of Dimension | 9 | | 7. | Land pattern (Footprint) | 10 | | 8. | Appendix | 11-12 | 150V N Channel Enhanced Mode MOSFET 1. Absolute Maximum Ratings (T_J=25°C unless otherwise noted) | Para | meter | Symbol | Value | Unit | |-----------------------------------|-----------------------|------------------|------------|------| | Drain-Source Voltage | | V _{DS} | 150 | V | | Gate-Source Voltage | | V _G s | ±20 | V | | Drain Current-Continuous Note 1 | T _C =25°C | l _a | 50.6 | Α | | Diam Current-Continuous 1966 1 | T _C =100°C | l _D | 32.0 | Α | | Drain Current-Continuous Note 2 | T _A =25°C | l _a | 8.3 | Α | | Drain Current-Continuous 1986 2 | T _A =70°C | - I _D | 6.6 | Α | | Drain Current-Pulsed Note 3 | T _A =25°C | I _{DM} | 120 | Α | | Avalanche Current | | I AR | 23 | Α | | Single Pulse Avalanche Energy Not | e 4 | Eas | 140 | mJ | | | T _C =25°C | | 64.6 | W | | | T _C =100°C | | 25.8 | W | | Maximum Power Dissipation | T _A =25°C | PD | 1.7 | W | | T _A =70°C | |] | 1.1 | W | | Derate Factor Above Tc=25°C | |] | 64.6 | W/°C | | Max. Operating Junction Temperat | TJ | 150 | °C | | | Operating and Storage Temperatu | re Range | TJ, TSTG | -55 to 150 | °C | 2. Thermal Resistance Ratings | 2. Thermal Resistance Ratings | | | | | | | |--------------------------------------|----------------|------------------------|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Thermal resistance, Junction-Case | R өлс-и | Please refer to Note 5 | - | - | 1.9 | °C/W | | Thermal resistance, Junction-Ambient | <i>R</i> өла-N | Please refer to Note 5 | - | - | 70.5 | °C/W | #### Notes: - 1. Limited by silicon chip capability and $R_{\Theta JC-N}$ junction-to-case thermal resistance. - 2. The maximum current rating is limited by package and R_{OJA-N} junction-to-ambient thermal resistance. - 3. Must be ensure junction temperature does not exceed 150-degree C. (Pulse Width≤100uS, Duty≤2%) - 4. Limited by T_{Jmax} , starting $T_J=25$ °C, L=0.5mH, $R_g=25\Omega$, $I_D=23A$, $V_{GS}=10V$. - 5. The value of thermal resistance is measured with the single device mounted on 1 inch^2 FR-4 PCB with 2 oz. copper under a still air environment temperature is 25°C based on JEDEC standard JESD51-14 and JESD51-2a. Thermal resistance obtained depends on the user's specific board design and given application. 3 150V N Channel Enhanced Mode MOSFET ## 3. Electrical Characteristics (T_J=25°C unless otherwise noted) | STATIC CHARACTERISTICS | | | | | | | |---------------------------------|----------------------|---|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Drain-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} =0V, I _{DS} =250µA | 150 | - | - | V | | Zoro Coto Voltago Droin Current | | V _{DS} =150V, V _{GS} =0V | - | - | 1 | μΑ | | Zero Gate Voltage Drain Current | IDSS | V _{DS} =150V, V _{GS} =0V, T _J =125°C | - | - | 100 | μΑ | | Gate-Body Leakage | Igss | V _{GS} =±20V, V _{DS} =0V | - | - | ±100 | nA | | STATIC CHARACTERISTICS | | | | | | | |----------------------------------|---------------------|---|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Gate Threshold Voltage | V _{GS(TH)} | V _{DS} =V _{GS} , I _{DS} =250µA | 1.4 | 1.8 | 2.2 | V | | Dunin Course On Chata Resistance | П | V _{GS} =10V, I _{DS} =20A | - | 11.0 | 13.0 | mΩ | | Drain-Source On-State Resistance | R _{DS(ON)} | V _{GS} =4.5V, I _{DS} =20A | - | 12.0 | 15.0 | mΩ | | Gate Resistance | Rg | V _{GS} =0V, V _{DS} =0V, f=1MHz | - | 1.2 | - | Ω | | Forward Transconductance | g fs | V _{DS} =5V, I _{DS} =5A | - | 23.0 | - | S | | DYNAMIC CHARACTERISTICS | | | | | | | |------------------------------|---------------------|--|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Input Capacitance | Ciss | V _{DD} =150V, V _{DS} =75V, V _{GS} =0V, f=1MHz | - | 3995 | - | pF | | Output Capacitance | Coss | V _{DD} =150V, V _{DS} =75V, V _{GS} =0V, f=1MHz | - | 269 | - | pF | | Reverse Transfer Capacitance | Crss | V _{DD} =150V, V _{DS} =75V, V _{GS} =0V, f=1MHz | - | 11.1 | - | pF | | Turn-On Delay Time | T _{d(on)} | V_{DS} =75V, V_{GS} =10V, I_{DS} =20A, R_{GEN} =3 Ω | - | 12.1 | - | nS | | Rise Time | Tr | V_{DS} =75V, V_{GS} =10V, I_{DS} =20A, R_{GEN} =3 Ω | - | 25.2 | - | nS | | Turn-Off Delay Time | T _{d(off)} | V_{DS} =75V, V_{GS} =10V, I_{DS} =20A, R_{GEN} =3 Ω | - | 55.4 | - | nS | | Fall Time | T _f | V_{DS} =75V, V_{GS} =10V, I_{DS} =20A, R_{GEN} =3 Ω | - | 35.6 | - | nS | | GATE CHARGE CHARACTERISTICS | | | | | | | |--|----------------------|---|------|------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Gate to Source Gate Charge | Q_{gs} | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 14.4 | - | nC | | Gate charge at threshold | $Q_{g(th)}$ | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 7.1 | - | nC | | Gate to Drain Charge | Q_{gd} | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 18 | - | nC | | Switching charge | Q _{SW} | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 25.3 | - | nC | | Gate charge total | Q _g 10V | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 73.6 | - | nC | | Gate charge total | Q _g 4.5V | V _{DD} =75V, I _D =20A, V _{GS} =0 to 4.5V | - | 47.8 | - | nC | | Gate plateau voltage | V _{plateau} | V _{DD} =75V, I _D =20A, V _{GS} =0 to 10V | - | 3.4 | - | V | | Gate charge total, sync. FET (Q _g - Q _{gd}) | Qg(sync) | V _{DS} =0.1V, V _{GS} =0 to 10V | - | 55.6 | - | nC | | DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS | | | | | | | |--|-------------------|--|------|-------|------|------| | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Unit | | Body Diode continuous forward current | Is | T _C =25°C | - | - | 50.6 | Α | | Body Diode pulse current | I _{SM} | T _C =25°C | - | - | 120 | Α | | Body Diode Forward Voltage | V _{SD} | V _{GS} =0V, I _S =20A | - | 8.0 | 1.2 | V | | Body Diode Reverse Recovery Time | | V _{DD} =75V, I _F =20A, di/dt=100A/μs | - | 85.5 | - | nS | | Body Diode Reverse Recovery Time | t _{rr} - | V _{DD} =75V, I _F =20A, di/dt=200A/μs | - | 64.7 | - | nC | | Pady Diada Payaraa Pagayary Charga | | V _{DD} =75V, I _F =20A, di/dt=100A/μs | - | 210.4 | - | nS | | Body Diode Reverse Recovery Charge | Qrr | V _{DD} =75V, I _F =20A, di/dt=200A/μs | - | 285.6 | - | nC | | Padu Diada Payaras Passyary Cymrart | | V _{DD} =75V, I _F =20A, di/dt=100A/μs | - | -4.0 | - | Α | | Body Diode Reverse Recovery Current | Irm | V _{DD} =75V, I _F =20A, di/dt=200A/µs | - | -7.5 | - | Α | ## 4. Typical Operating Characteristics Diagram 150V N Channel Enhanced Mode MOSFET ### 4. Typical Operating Characteristics Diagram 150V N Channel Enhanced Mode MOSFET 150V N Channel Enhanced Mode MOSFET ### 4. Typical Operating C haracteristics Diagram 150V N Channel Enhanced Mode MOSFET ## 5. Marking Information | PDFN 5x6-8L (Q) | Marking Rule | |----------------------------------|---| | Laser Marking DG150N06Q YYMMXXX | Line 1 : Device DG150N06Q Line 2 : Date Code YYMMXXX YY : Year Code MM : Month Code XXX : Serial Number | | | | 150V N Channel Enhanced Mode MOSFET ### 6. Package of Dimension | Symbol | Min | Nor | Max | |--------|----------|------|------| | Α | 0.90 | 1.04 | 1.17 | | b | 0.33 | 0.42 | 0.51 | | C | 0.06 | 0.20 | 0.35 | | D1 | 4.80 | 5.10 | 5.40 | | D2 | 3.61 | 3.96 | 4.31 | | Е | 5.90 | 6.03 | 6.15 | | E1 | 5.65 | 5.75 | 5.85 | | E2 | 3.30 | 3.54 | 3.78 | | e | 1.27 BSC | | | | Н | 0.38 | 0.50 | 0.61 | | Ĺ | 0.38 | 0.55 | 0.71 | | L1 | 0.05 | 0.15 | 0.25 | - 1. All dimension are in millimeters. - 2. Dimension does not in nclude burrs and mold flash/protrusions. 150V N Channel Enhanced Mode MOSFET Note 1: Land pattern (Footprint) design is for reference only. Note 2: Package body sizes exclude mold flash and burrs. Note 3: Dimension is measured in gauge plane. Note 4: Tolerance 0.1mm unless otherwise specified. 150V N Channel Enhanced Mode MOSFET ### 8. Appendix-A ## Soldering Methods for Silicongear's Products (Just for SMD type of device) - 1. Storage environment: Temperature=10°C to 35°C Humidity=65%±15% - 2. Reflow soldering of surface-mount devices | Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly | |--|-------------------------|------------------| | Average ramp-up rate (T _L to T _P) | <3°C/sec | <3°C/sec | | Preheat | | | | - Temperature Min (Ts _{min}) | 100°C | 150°C | | - Temperature Max (Ts _{max}) | 150°C | 200°C | | - Time (min to max) (ts) | 60 to 120 sec | 60 to 180 sec | | Tsmax to T∟ | | | | - Ramp-up Rate | <3°C/sec | <3°C/sec | | Time maintained above: | | | | - Temperature (T∟) | 183°C | 217°C | | - Time (t∟) | 60 to 150 sec | 60 to 150 sec | | Peak Temperature (T _P) | 240°C +0/-5°C | 260°C +0/-5°C | | Time within 5°C of actual Peak | 10 to 30 sec | 20 to 40 sec | | Temperature (t₂) | 10 to 30 sec | 20 to 40 sec | | Ramp-down Rate | <6°C/sec | <6°C/sec | | Time 25°C to Peak Temperature | <6 minutes | <8 minutes | #### 3. Flow (wave) soldering (solder dipping) | Products | Peak Temperature | Dipping Time | |------------------|------------------|--------------| | Pb devices. | 245°C ±5°C | 5sec ±1sec | | Pb-Free devices. | 260°C +0/-5°C | 5sec ±1sec | 150V N Channel Enhanced Mode MOSFET #### 8. Appendix-B ## **Important Notice** #### © Silicongear Corporation ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Silicongear cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Silicongear product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. Silicongear Corporation, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Silicongear"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Silicongear makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Silicongear disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Silicongear's knowledge of typical requirements that are often placed on Silicongear products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Silicongear's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Silicongear products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Silicongear product could result in personal injury or death. Customers using or selling Silicongear products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Silicongear and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Silicongear or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Silicongear personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Silicongear. Product names and markings noted herein may be trademarks of their respective owners. Silicongear and the Silicongear logo are trademarks of Silicongear Corporation. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.