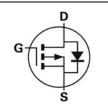


-30V P-CHANNEL Power MOSFET


 V_{DSS} , -30V

 $R_{DS(ON)}$, $58m\Omega$ (max.) @ $V_{GS} = -10V$ $R_{DS(ON)}$, $95m\Omega$ (max.) @ $V_{GS} = -4.5V$

I_D, -3.9A

Description

The SGP3060S is the highest performance trench P-Ch MOSFETs with extreme high cell density, which provide excellent $R_{DS(ON)}$ and gate charge for most of the synchronous buck converter applications.

The SGP3060S meet the RoHS and Green Product requirement, with full function reliability approved.

Features

- Low On-Resistance
- Low Input Capacitance
- Low Miller Charge
- · Fast Switching Speed

Applications

- · Motor / Body Load Control
- Automotive Systems
- Load Switch
- DC-DC converters

Ordering Information

Ordering Code	RoHS Status	Package	Package Code	Packing	Quantity
SGP3060S	Halogen-Free	SOP-8	S	Tape & Reel	3,000

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Paramete	er	Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	-30	V
Gate-Source Voltage		V _{GS}	±20	V
T _A =25°C		l _a	-3.9	Α
Drain Current-Continuous	T _A =75°C	ID	-3.0	Α
Drain Current-Pulsed Note 1		I _{DM}	-17	Α
Maximum Dawar Dissination	T _A =25°C	D	1.3	W
Maximum Power Dissipation	T _A =75°C	P _D	0.8	W
Storage Temperature Range		T _{STG}	-55 to +150	°C
Operating Junction Temperature Range		TJ	-55 to +150	°C

Thermal Resistance Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum Junction-to-Ambient Note 2	RθJA	Steady State	-	-	100	°C/W
Maximum Junction-to-Case	Rejc	Steady State	-	-	40	°C/W

1

-30V P-CHANNEL Power MOSFET

Electrical Characteristics (T_J=25°C unless otherwise noted)

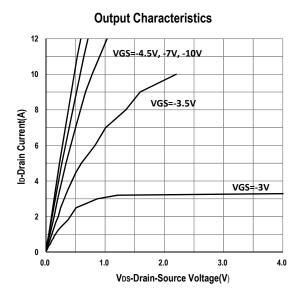
OFF CHARACTERISTICS							
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _{DS} =-250μA	-30	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-24V, V _{GS} =0V	-	-	-1	μΑ	
Gate-Body Leakage	Igss	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA	

ON CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _{DS} =-250µA	-1.1	-	-2	V
Drain Course On State Registeres	_	V _{GS} =-10V, I _{DS} =-3.9A	-	-	58	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _{DS} =-3A	-		95	mΩ
Gate Resistance	R_g	V _{GS} =0V, V _{DS} =0V, f=1MHz	-	10	20	Ω
Forward Transconductance Note 1	g fs	V _{DS} =-5V, I _D =-4.2A	-	4.8	-	S

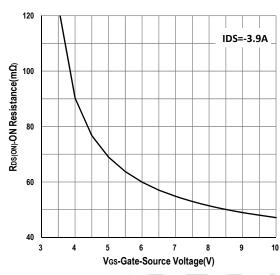
DYNAMIC CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input Capacitance	Ciss		7	459	-	
Output Capacitance	Coss	V _{DS} =-15V, V _{GS} =0V, f=1MHz	-	64	-	pF
Reverse Transfer Capacitance	C_{rss}		-	42	-	

SWITCHING CHARACTERISTICS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Turn-On Delay Time	T _{d(on)}		-	3.32	-	
Rise Time	tr	V_{DD} =-15V, V_{GS} =-10V, R_{G} =3 Ω ,	-	17.8	-	
Turn-Off Delay Time	$T_{d(off)}$	I _D =-1A	-	19.8	-	ns
Fall Time	tf		-	20.5	-	
Total Gate Charge at 10V	Qg		-	3.8	-	
Gate to Source Gate Charge	Q _{gs}	V_{DS} =-15V, V_{GS} =-4.5V, I_{D} =-3.9A	-	1.9	-	nC
Gate to Drain "Miller" Charge	Q_{gd}		-	1.1	-	

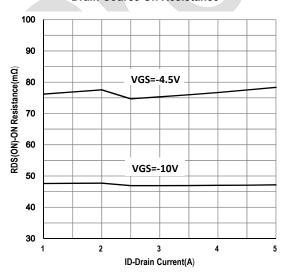
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS						
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =-1A	-	-	-1.2	V
Body Diode Reverse Recovery Time	trr	V _{DD} =-15V, I _F =-3.9A,	-	12.5	-	ns
Body Diode Reverse Recovery Charge	Qrr	di/dt=100A/µs	-	4.7	-	nC

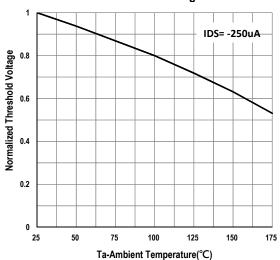

Notes:

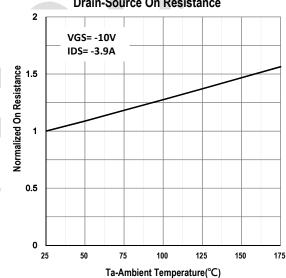
- 1. Pulse Test: Pulse Width ≤ 10ms, Duty Cycle ≤ 1%.
- 2. For surface-mounted devices, both R_{BCA} and R_{BJC} are measured with the device mounted on approximately 1"x1" FR-4 PCBs. In actual applications, many factors including the PCB material and layout, may affect the thermal resistance of the device-board assembly. For best results, characterize the thermal resistance directly in the application circuit.

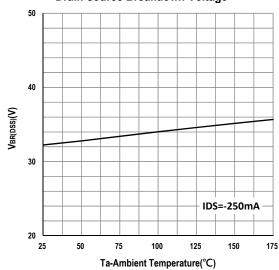


-30V P-CHANNEL Power MOSFET

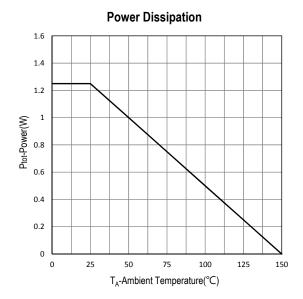

Typical Operating Characteristics

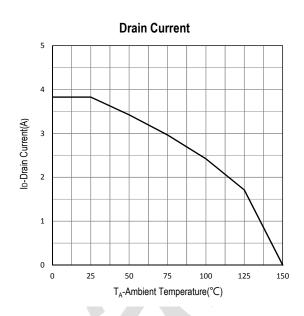


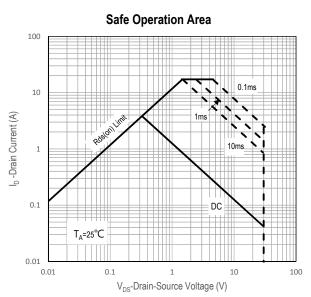

Drain-Source On Resistance


Gate Threshold Voltage

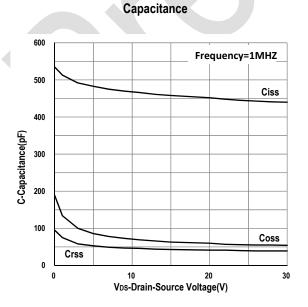
Drain-Source On Resistance


Drain-source Breakdown Voltage





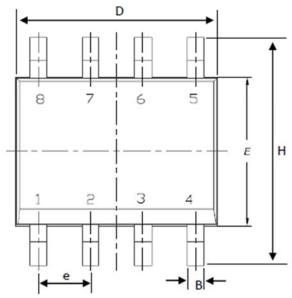
-30V P-CHANNEL Power MOSFET


Typical Operating Characteristics (Cont.)

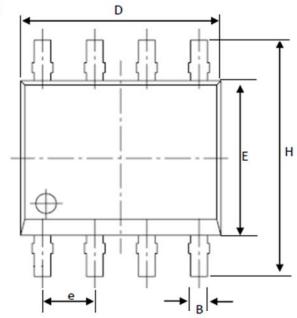
SGP3060S
-30V P-CHANNEL Power MOSFET

Marking Information

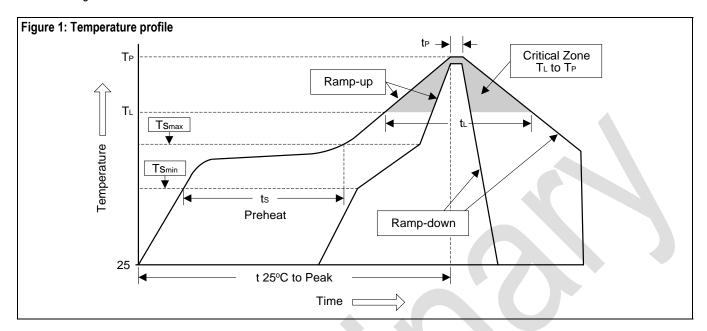
SOP-8	Marking Rule
Laser Marking	Line 1 : Device Name
	SGP3060S
	Line 2 : Date Code
SGP3060S	YYMMXXX
YYMMXXX	YY: Year Code
	MM: Month Code
	XXX : Serial Number


5

-30V P-CHANNEL Power MOSFET


Package of Dimension

Symbol	Min	Nor	Max
Α	1.35	1.55	1.75
A1	0.10	0.18	0.25
В	0.31	0.41	0.51
С	0.17	0.21	0.25
D	4.80	4.90	5.00
E	3.80	3.90	4.00
е	1.27	1.27	1.27
H	5.80	6.00	6.20
L	0.40	0.84	1.27
α	0.00	4.00	8.00



-30V P-CHANNEL Power MOSFET

Soldering Methods for Silicongear's Products

- 1. Storage environment: Temperature=10°C to 35°C Humidity=65%±15%
- 2. Reflow soldering of surface-mount devices

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (T _L to T _P)	<3°C/sec	<3°C/sec
Preheat		,
- Temperature Min (Ts _{min})	100°C	150°C
- Temperature Max (Ts _{max})	150°C	200°C
- Time (min to max) (ts)	60 to 120 sec	60 to 180 sec
Tsmax to T∟		
- Ramp-up Rate	<3°C/sec	<3°C/sec
Time maintained above:		
- Temperature (T _L)	183°C	217°C
- Time (t _L)	60 to 150 sec	60 to 150 sec
Peak Temperature (T _P)	240°C +0/-5°C	260°C +0/-5°C
Time within 5°C of actual Peak	10 to 30 sec	20 to 40 sec
Temperature (t _P)	10 to 30 sec	20 to 40 Sec
Ramp-down Rate	<6°C/sec	<6°C/sec
Time 25°C to Peak Temperature	<6 minutes	<8 minutes

3. Flow (wave) soldering (solder dipping)

Products	Peak Temperature	Dipping Time
Pb devices.	245°C ±5°C	5sec ±1sec
Pb-Free devices.	260°C +0/-5°C	5sec ±1sec

-30V P-CHANNEL Power MOSFET

Important Notice

© Silicongear Corporation

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Silicongear cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Silicongear product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

Silicongear Corporation, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Silicongear"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Silicongear makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Silicongear disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Silicongear's knowledge of typical requirements that are often placed on Silicongear products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Silicongear's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Silicongear products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Silicongear product could result in personal injury or death. Customers using or selling Silicongear products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Silicongear and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Silicongear or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Silicongear personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Silicongear. Product names and markings noted herein may be trademarks of their respective owners.

Silicongear and the Silicongear logo are trademarks of Silicongear Corporation. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.